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Figure 1. Similar to normal lymph nodes, PD-L1 is expressed by myeloid ICs in DLBCL, with different prevalence and intensity depending on the staining

procedure. (A) Membranous immunohistochemical stain for PD-L1 protein (with hematoxylin counterstain) on cells with myeloid/dendritic morphology in normal lymph nodes

(original magnification 3400). (B) Representative images of PD-L1 protein staining (SP263; original magnification 3400) among DLBCL patients treated in MAIN using a

simplified IHC scoring system capturing PD-L11 ICs or TCs (IHC 1, 1%-5%; IHC 2, 5%-10%; IHC 3, .10%). Yellow arrows represent PD-L1 staining on myeloid cells,

and red arrows represent PD-L1 staining on malignant B cells. (C) PD-L1 prevalence and staining intensity among de novo DLBCL patients treated in 2 phase 3 clinical

trials (MAIN, GOYA) using 2 different PD-L1 IHC reagents (SP142, SP263). (D) PD-L1 messenger RNA (mRNA) is higher in the ABC DLBCL subset (P 5 .004; MAIN).

Freq, frequency; nRPKM, normalized reads per kilobase million.
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suggesting that high STAT3 signaling among tumor-associated
macrophages may contribute to PD-L1 expression in DLBCL.

The macrophage effect was consistent among the ABC (HR, 0.6;
95% CI, 0.22-1.6; P5 .32) and GCB (HR, 0.79; 95% CI, 0.26-2.3;
P 5 .66) DLBCL subsets in MAIN (supplemental Figure 4).
Moreover, high STAT3 mRNA similarly correlated with prolonged

PFS (HR, 0.67; 95% CI, 0.48-0.93; P 5 .015; Figure 3F) among
patients treated in GOYA, suggesting that high STAT3 signaling
among tumor-associated macrophages may contribute to PD-L1
expression in DLBCL.

To attempt separation of macrophage subsets, we tested gene
signatures designed to estimate the frequency of the M0, M1, and
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Figure 2. PD-L1 expression correlates with macrophage

and STAT3 gene expression. (A) CD274 (PD-L1) mRNA

expression inversely correlates with a B-cell gene signature

among DLBCL patients treated in MAIN. (B) CD274 mRNA is

highly expressed by purified DCs and macrophages compared

with resting B cells. PD-L1 protein expression correlates with

a macrophage gene signature among DLBCL patients treated

in MAIN (C) and GOYA (D). CD274 mRNA correlates with a

macrophage gene signature among DLBCL patients treated

in MAIN (E) and GOYA (F). CD274 mRNA correlates with

STAT3 gene expression (G) and a STAT3 gene signature

(H) among DLBCL patients treated in GOYA.
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Figure 3. PD-L1 is not a negative prognostic biomarker in de novo DLBCL and may be associated with better prognosis in some patients, similar to

macrophages and STAT3. (A) High PD-L1 protein expression (IHC 21, 31) by SP263 is associated with prolonged PFS in de novo DLBCL (MAIN). (B) Forest plot of HRs

and 95% CIs for the association of PD-L1 expression and PFS with regard to different PD-L1 IHC reagents (SP142, SP263), the PD-L1 transcript (CD274 mRNA), and

distinct DLBCL COO subgroups in MAIN and GOYA. High expression of a macrophage gene signature correlates with prolonged PFS (C) and adds prognostic information to

DLBCL COO (D-E). (F) High expression of STAT3 mRNA correlates with prolonged PFS in de novo DLBCL (GOYA). Hazard ratios adjusted for IPI and treatment (MAIN) or

IPI, treatment, region, and number of chemotherapy cycles (GOYA). Uncl, unclassified.
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M2macrophage phenotypes28 (supplemental Table 1). The M1 and
M2 signatures were highly correlated with each other (r 5 0.92)
and with the undifferentiated M0 signature (r . 0.8), making it
difficult to assess the independent contribution of each signature.
Only the gene signature designed to estimate the undifferentiated
M0 macrophage subset was associated with statistically signif-
icant prolonged PFS (HR, 0.65; 95% CI, 0.47-0.91; P 5 .012);
neither the M1 nor M2 signature was significantly associated with
PFS (M1: HR, 0.8; 95% CI, 0.58-1.1; P 5 .17; M2: HR, 0.84; 95%
CI, 0.61-1.2; P 5 .3).

Discussion

In this current study, we tested the hypothesis that PD-L1
expression reflects abundance of activated tumor-infiltrating mac-
rophages and may not be associated with worse outcomes, in
contrast to solid tumors, among de novo DLBCL patients treated
with chemoimmunotherapy. Despite very low levels of PD-L1 in
normal B cells, reports of PD-L1 expression in B-cell malignancies
are conflicting, with different B-cell tumors expressing PD-L1 at
varying levels and on different cell populations within the tumor
microenvironment. Careful consideration of both TC and IC PD-L1
expression may be important for predicting responses to PD-1/
PD-L1 checkpoint blockade, as seen in solid tumors.29 In
classical Hodgkin lymphoma (cHL), PD-L1 is detected on
malignant Reed-Sternberg cells in a large majority of patients
(70% to 80%) because of alterations in 9p24.1, which harbors
the PD-L1 locus. Reed-Sternberg cells, however, comprise only
a small proportion of the total tumor bulk (ie, 5% to 10%) in cHL,
and a majority of PD-L1–expressing cells in cHL are macro-
phages.30 In other B-cell malignancies like follicular lymphoma,
marginal zone lymphoma, mantle cell lymphoma, and Burkitt
lymphoma, PD-L1 is rarely found on neoplastic B cells (10%,
5%, 0%, and 0%, respectively),13,31-33 with low levels of PD-L1
expression detectable on intratumoral histiocytes and regulatory
T cells. Our data confirm that in DLBCL, PD-L1 expression by
malignant B cells is low, with expression primarily restricted to
tumor-infiltrating myeloid cells.

We observed surprising biases in PD-L1 staining depending on
the IHC assay and protocol used. Overall, SP263 showed the
highest staining intensity in both DLBCL cohorts and was the most
correlated with CD274 mRNA expression. The SP142 antibody
stained significantly fewer PD-L11 cells in MAIN, but with TSA
amplification in GOYA, it was roughly comparable to SP263.
These results may help explain some of the conflicting results
regarding the prognostic effect of PD-L1 in DLBCL,8,34 which may
be important for interpreting clinical data for PD-1/PD-L1 check-
point blockade in this indication. Moreover, these results highlight
the importance of standardizing PD-L1 assay reagents and
staining procedures in DLBCL, if PD-L1 becomes a relevant
biomarker for anti–PD-1/PD-L1 therapies.

Despite the well-established negative prognostic effect of PD-L1
expression in solid tumors, our data demonstrate that among de
novo DLBCL patients treated with chemoimmunotherapy, PD-L1
expression on non-TCs is not a negative prognostic biomarker and
in fact may be associated with better prognosis. In this setting, the
biologic and prognostic effects of PD-L1 may be due to its role as a
proxy for macrophage infiltration and may be particularly dependent
upon anti-CD20 monoclonal antibody (mAb) therapy. The PD-L1
correlation with improved outcomes in MAIN using SP263 was

seen to a lesser extent in patients treated in GOYA, but it was only
statistically significant among GCB DLBCL patients using the
SP142 PD-L1 reagent with TSA amplification. These data from 2
large phase 3 studies suggest that PD-L1 is not a reliable prognos-
tic biomarker in de novo DLBCL, and differences in IHC reagents
or patient subsets may affect the clinical significance of PD-L1
expression.

Macrophages are important mediators of antibody-dependent
phagocytosis (ADCP), and preclinical studies have demonstrated
that macrophages are required for responses to anti-CD20
(rituximab/obinutuzumab) therapy.35,36 In the absence of anti-
CD20 mAb, tumor-associated macrophages may provide a nur-
turing microenvironment for malignant B cells.37,38 The treatment
dependency of this bidirectional influence of tumor-associated
macrophages is supported by other studies of the prognostic
impact of myeloid cells on B-cell malignancies.39 Markers of
macrophage infiltration are associated with worse outcomes in
both DLBCL and Hodgkin lymphoma patients treated with
chemotherapy in the absence of anti-CD20 mAb immunotherapy
and with better outcomes when rituximab is added to chemother-
apy in de novo DLBCL.39,40 Our data suggest that PD-L1 correlates
with markers of tumor-infiltrating macrophages in DLBCL, possi-
bly reflecting an activated macrophage subset primed for ADCP
and contributing to better outcomes among patients treated with
modern immunochemotherapy. Interestingly, high expression of
the macrophage gene signature added prognostic information to
tumor cell of origin and was validated in ABC DLBCL in our MAIN
cohort, suggesting a novel tumor-microenvironment interaction
and the potential importance of ADCP in the ABC subset.

Macrophages exist in different functional states, the most common
of which are the M0 (resting), M1 (classically activated), and M2
(alternatively activated) macrophages. The M2 macrophage phe-
notype has been linked with highly active phagocytosis of anti-
CD20–bound TCs41; however, it has been reported that a high
concentration of tumor-associated M2 macrophages results in
worse DFS in R-CHOP–treated de novo DLBCL patients.42 We
attempted to determine the functional state of the tumor-infiltrating
macrophages by using gene signatures that reflect the M0, M1, or
M2 phenotype and compared these signatures with our general
macrophage signature. All macrophage signatures were highly
correlated, making it a challenge to demonstrate that any one
subset is more prevalent than the other. Despite the strong
correlations, only the M0 macrophage signature demonstrated the
same prognostic effect as the general macrophage signature used
in this study. Future work will need to explore the function of the
different macrophage subsets separately to determine how they
contribute to response to anti-CD20 therapy.

Previously published results using multiplex immunofluorescence43

and unpublished studies have shown that PD-L1 expression can be
seen in CD681 macrophages and CD11c1 DCs; this has been
observed in benign lymphoid tissues as well as diverse tumor
indications. A limitation of our current study is that the determina-
tion of PD-L11 cells (ie, TCs vs non-TCs) was made based on
morphologic/cytologic features (nuclear pleomorphism, prominent
nucleoli, high nuclear/cytoplasmic ratio). The limited tissue avail-
able from these studies prevented us from performing the ideal
dual stains with lineage-specific markers to more specifically
define the cells expressing PD-L1. The morphologic features of
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the PD-L11 cells together with the documented high prevalence of
macrophages within DLBCL tissues44 suggest that many PD-L11

cells belong to the macrophage lineage, although there are likely
other cell populations that stain for PD-L1. Among tumor biopsies
from 3 evaluable DLBCL patients from a separate cohort, we
performed quantitative CD68 and PD-L1 colocalization IHC exper-
iments. In all 3 cases, we saw clear PD-L1 and CD68 colocalization,
with 1.2% to 18.9% of the tumor area occupied by CD681 cells,
and 30% to 52% of the CD681 cells costained with PD-L1. Future
work is planned to more robustly calculate the total number of
PD-L1 and CD68 coexpressing cells in a separate cohort and to
determine if high coexpression of these 2 markers is similarly
associated with outcome.

To further explore mechanistic insights, we performed additional
analyses of gene signatures with PD-L1 IHC results, focusing on
macrophage subsets and signaling pathways controlling PD-L1
expression. Cytokines such as interferon g and tumor necrosis
factor a, as well as cytokine signaling pathways such as NF-kB
and Stat3, have been shown to regulate PD-L1 expression.45

Certain lymphomas have also been shown to produce soluble
factors like interleukin-10, which may polarize the tumor microenvi-
ronment and potentially induce PD-L1 expression on tumor-resident
macrophages. In our DLBCL cohorts, high STAT3 expression
correlated with PD-L1 and macrophage gene expression and
prolonged PFS among patients treated in GOYA, suggesting a
functional relationship between STAT3 signaling, macrophages,
and PD-L1 expression in de novo DLBCL.

The role of PD-L1–expressing myeloid cells in mediating a clinical
benefit of anti–PD-1/PD-L1 and anti-CD20 immunotherapies merits
additional research. Recent mechanistic studies in mice suggest that
DC PD-L1 expression may play an important role in mediating
anti–PD-L1 benefit.46 DC ablation before anti–PD-L1 treatment
in tumor-bearing mice compromises anti–PD-L1 efficacy, because

anti–PD-L1 treatment induces DC maturation, leading to T-cell
proliferation.46 Similarly, in tumors containing PD-1–expressing
macrophages, treatment with anti–PD-L1 led to increased phagocy-
tosis and tumor clearance.47 Future studies should explicitly examine
the effect of PD-L1–expressing myeloid cell subsets on clinical
outcomes and phagocytic potential, with implications for anti-CD20,
anti–PD-1/PD-L1, and other myeloid targeting therapies like anti-
CSF1R.
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