P16^{INK4A} EXPRESSION AS DIFFERENTIATION MARKER IN BENIGN AND MALIGNANT MELANOCYTIC LESIONS AND FISH ANALYSIS

S. Petroni, T. Addati, O. Popescu, M. Centrone, V. Rubini, G. Giannone, G. Simone

Anatomic Pathology Unit
NCRC Istituto Tumori “Giovanni Paolo II”, Bari-Italy
Background...

Malignant melanoma incidence is increasing by 4% every year all over the world. Different DNA aberrations have been reported in 95% of skin melanomas and represent a marker to distinguish benign melanocytic nevi from melanomas. The FISH-based test is considered the gold standard for assisting the diagnosis of melanocytic lesions of uncertain potential, with 87% sensitivity and 95% specificity.
...Background

Scientific data shows that the loss of p16INK4a expression could be significantly correlated with the degree of malignancy, with the progression from nevus to melanoma.

Aim fo the Study

- To analyze the impact of FISH and IHC in a small series of skin samples, in order to evaluate the behavior in dysplastic melanocytic lesions.
Methods

Twenty skin samples:

- 4 melanocytic nevi
- 9 dysplastic nevi
- 7 melanomas in situ

were assessed with fluorescence in situ hybridization (FISH) test, targeting 6p25 (RREB1), 6q23 (MYB), centromere 6 (Cep6), and 11q13 (CCND1), and with p16INK4a immunohistochemistry reaction.
Results

Our data show that 4/4 melanocytic nevi, used as a negative control, were p16 INK4a (+) and FISH(-). Most dysplastic lesions 6/9) were p16INK4a(+) and FISH(-), 2/9 were p16INK4a(+) and FISH(+) and only 1/9 was p16INK4a(-) and FISH(+).

Regarding melanomas in situ, used as positive control, 4/7 were p16INK4a(+) and FISH(+), 2/7 were p16INK4a(-) and FISH(+) and only one was p16INK4a(+) but it was not valuable for FISH analysis.
Results

<table>
<thead>
<tr>
<th>Isto logical Diagnosis</th>
<th>P16+/ FISH+</th>
<th>P16-/ FISH+</th>
<th>P16+/ FISH-</th>
<th>P16-/ FISH-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanocitic lesion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Displastic nevus</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Melanoma in situ</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>6*</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>19</td>
</tr>
</tbody>
</table>

* One case diagnosed as Melanoma in situ, was p16INK4a(+) but it was not valuable for FISH analysis.
Melanoma with $p16^{INK4a}(+) \text{ and } p16^{INK4a}(-)$ area
Melanoma with $p16^{\text{INK4a}(+)}$ area
Melanoma with FISH (+) area

CCND1- MYB>=2.5

100X

National Cancer Centre of Bari
Italy
Melanoma with FISH (-) area
Conclusion

Our data revealed:

- an immunophenotypic pattern p16INK4a(+)/FISH(-) in melanocytic nevi
- a prevalent pattern immunophenotypic p16INK4a(+)/FISH(-) (to note that 33% were FISH+) in dysplastic lesions
- a prevalent immunophenotypic pattern p16INK4a(+)/FISH(+) in melanomas in situ.